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Abstract
Microbes can have profound effects on host fitness and health and the appearance of 
late-onset diseases. Host–microbe interactions thus represent a major environmen-
tal context for healthy aging of the host and might also mediate trade-offs between 
life-history traits in the evolution of host senescence. Here, we have used the nema-
tode Caenorhabditis elegans to study how host–microbe interactions may modulate 
the evolution of life histories and aging. We first characterized the effects of two 
non-pathogenic and one pathogenic Escherichia coli strains, together with the path-
ogenic Serratia marcescens DB11 strain, on population growth rates and survival of 
C. elegans from five different genetic backgrounds. We then focused on an outbred 
C. elegans population, to understand if microbe-specific effects on the reproductive 
schedule and in traits such as developmental rate and survival were also expressed 
in the presence of males and standing genetic variation, which could be relevant for 
the evolution of C. elegans and other nematode species in nature. Our results show 
that host–microbe interactions have a substantial host-genotype-dependent impact 
on the reproductive aging and survival of the nematode host. Although both patho-
genic bacteria reduced host survival in comparison with benign strains, they differed 
in how they affected other host traits. Host fertility and population growth rate were 
affected by S. marcescens DB11 only during early adulthood, whereas this occurred 
at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely 
dependent on the host genotypes. Given such microbe-specific genotypic differences 
in host life history, we predict that the evolution of reproductive schedules and senes-
cence might be critically contingent on host–microbe interactions in nature.
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1  |  INTRODUC TION

Microbes are thought to have major effects on the evolution and 
speciation of host populations due to their ubiquitous presence 
and ability to influence host physiology and health (Bordenstein 
et al.,  2001; McFall-Ngai et al.,  2013; Zilber-Rosenberg & 
Rosenberg, 2008). While microbes are best known for their patho-
genic or mutualistic effects, they can also modulate how hosts per-
ceive and respond to stressful conditions. This has been observed, 
for example, in contexts as diverse as viral infections (Martinez 
et al.,  2014) and other biotic stresses (Zhang et al.,  2021), the 
autoimmune response (Langan et al.,  2019), drug therapy (Pryor 
et al., 2019), metabolic dysfunction (Ussar et al., 2016), exposure 
to high temperatures (Howells et al., 2016; Xie et al., 2013), and 
chemical toxicity (Coryell et al., 2018). Microbes can thus impact 
the adaptation of host populations to conditions that are unre-
lated to the host–microbe interaction itself (Bates et al.,  2021; 
Faria et al., 2016; Hoang et al., 2021; Martinez et al., 2016), which 
suggests they can also have an indirect and still poorly under-
stood, but fundamental, role in shaping the evolution of host life 
history and aging.

The progressive loss of physiological function leading to a de-
cline in fecundity and increased mortality, which defines aging, 
can be explained by the reduced efficacy of selection in purging 
mutations that have deleterious effects late in life (Fisher, 1930; 
Flatt & Partridge,  2018; Flatt & Schmidt,  2009; Haldane,  1941; 
Hamilton, 1966; Kirkwood & Austad, 2000; Medawar, 1946, 1952; 
Rose, 1991; Williams,  1957). A major mechanism underlying the 
evolution of aging is antagonistic pleiotropy, i.e., the existence 
of alleles with antagonistic effects on early and late life-history 
traits, which lead to genetic trade-offs between fitness compo-
nents (Flatt,  2020; Flatt & Promislow,  2007; Medawar,  1946, 
1952; Rose,  1991; Stearns,  1989, 1992; Williams,  1957). Under 
this model, aging evolves because strong selection for beneficial 
fitness effects early in life outweighs the deleterious effects of 
these alleles late in life when selection is weak (Williams, 1957). 
A large body of work in numerous organisms, including the nema-
tode worm Caenorhabditis elegans (Anderson et al., 2011), the fruit 
fly Drosophila melanogaster (reviewed in Flatt, 2020), or the fish 
Poecilia reticulata (Reznick et al., 1990), has revealed antagonistic 
pleiotropy underlying trade-offs by showing correlated responses 
to selection in major fitness components such as developmental 
rate, early and late fecundity, and lifespan.

Even when populations harbor genetic variation at antago-
nistically pleiotropic loci, environmental factors may prevent the 
expression of phenotypic trade-offs and correlated changes in life-
history traits (Ackermann et al., 2001; Giesel et al.,  1982; Guttel-
ing et al.,  2007; Sgrò & Hoffmann, 2004; Stearns, 1989; Swanson 
et al., 2016). Microbes are likely to be important environmental com-
ponents in the evolution of aging, given their known effects on host 
life-history traits (Brummel et al., 2004; Decaestecker et al., 2003; 
Diaz et al.,  2015; Laughton et al.,  2014; Leroy et al.,  2012; Lit-
tle et al.,  2002; Parker et al.,  2014; Vale & Little, 2012; Zurowski 

et al., 2020) and their evolution (Gibson et al., 2015; Sorci & Clob-
ert, 1995; Walters et al., 2020). Causal relationships between the 
composition of the intestinal microbiome and aging observed 
in humans (Claesson et al.,  2011) and other organisms (Bárcena 
et al., 2019; Clark et al., 2015; Sonowal et al., 2017) are consistent 
with this idea.

Studies with the C. elegans model hold great promise for an im-
proved understanding of the interplay between host–microbe inter-
actions and the evolution of aging. For example, the worm system has 
been extensively used in the identification of the genetic pathways 
underpinning aging and longevity (Antebi, 2007; Evans et al., 2008; 
Garsin et al., 2003; Kurz & Tan, 2004; Leroy et al., 2012), many of 
which are shared with humans (Kurz & Tan, 2004). At the same time, 
C. elegans has also been a valuable tool for studying host–microbe in-
teractions (Aballay et al., 2000; Coolon et al., 2009; Diaz et al., 2015; 
Garsin et al., 2003; Leroy et al., 2012; Marsh et al., 2016; Schulen-
burg et al., 2004; Schulenburg & Félix, 2017; Tan et al., 1999; Zhang 
et al., 2021) and how, either through the nutritional content of bacte-
ria or specific pathogenic effects, such interactions regulate host de-
velopment, reproduction, metabolism, immunity, and lifespan (Chan 
et al., 2019; MacNeil et al., 2013; Pang & Curran,  2014). Notably, 
links between immunity and aging are well established in C. elegans 
(Evans et al., 2008; Garsin et al., 2003; Kurz & Tan, 2004; Troemel 
et al., 2006), for example in the context of lifespan expansion ob-
tained with specific bacterial metabolites (Gusarov et al., 2013; Han 
et al., 2017; Virk et al., 2012) or by transferring worms from their 
regular food source (Escherichia coli OP50) to other bacteria such 
as Bacillus subtilis (Aballay et al., 2000; Donato et al., 2017; Portal-
Celhay et al., 2012).

In support of the importance of host–microbe interactions in the 
evolution of C. elegans in its natural settings (Félix & Braendle, 2010; 
Martin et al., 2017; Schulenburg & Ewbank, 2004), microbial effects 
have been shown to vary between C. elegans genotypes, repre-
sented by different wild type strains (Martin et al., 2017; Schulen-
burg & Ewbank, 2004; Zhang et al., 2021). Interestingly, the worm's 
genotype was also shown to have an active role in determining the 
gut colonization success of different bacteria (Marsh et al.,  2016; 
Zhang et al., 2021).

To date, it remains largely unclear to what extent the evolution 
of life histories and senescence in nematode hosts depends on spe-
cific host–microbe interactions. To address this question, we studied 
the impact of different pathogenic and non-pathogenic bacteria on 
the reproductive schedule and survival of C. elegans. To this end, we 
focused on two non-pathogenic E. coli strains, a pathogenic E. coli 
strain, and a pathogenic Serratia marcescens strain. First, we con-
firmed that the effects of each microbe on the host's reproductive 
timing and lifespan depended on the host's genotype, suggesting 
the potential for local adaptation to the microbial environment. Sec-
ondly, we studied a genetically diverse, male–female (gonochoristic) 
laboratory-derived C. elegans population (Theologidis et al., 2014) to 
study how microbes affect life-history traits (age-specific and total 
fertility, age at first reproduction, male and female developmental 
rate, lifespan) and their evolution in C. elegans.
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2  |  MATERIAL S AND METHODS

2.1  |  Bacterial strains

Bacterial strains used in our experiments included two commonly em-
ployed non-pathogenic Escherichia coli strains, OP50 (Brenner, 1974) 
and HT115(DE3) (Timmons et al., 2001), and two pathogenic strains, 
E. coli IAI1 (Diard et al., 2007; Picard et al., 1999) and Serratia marc-
escens Db11 (Flyg et al., 1980; Kurz et al., 2003). E. coli HT115(DE3) 
had been used as food during the establishment of the C. elegans D00 
population described below. The strains E. coli HT115(DE3), E. coli 
OP50, and S. marcescens Db11 were obtained from the Caenorhab-
ditis Genetics Center (CGC), and the E. coli IAI1 strain was kindly pro-
vided by Ivan Matic.

2.2  |  Nematode populations

To assay life-history responses to the four above-mentioned mi-
crobe strains we used the N2 lab-adapted strain and 4 wild iso-
lates (CB4852, CB4855, CB4856, PX174), each one being isogenic 
with respect to a different genotype (from here on designated 
“individual genotypes”), and the outbred experimental C. elegans 
population, D00. The D00 population was first described by The-
ologidis et al.  (2014), being a genetically diverse dioecious pop-
ulation (with males and females) established by introgression of 
the fog-2(q71) mutant allele (Schedl & Kimble, 1988) into the ge-
netic background of a previously laboratory-adapted androdioe-
cious population (consisting of males and hermaphrodites; Chelo 
& Teotónio, 2013; Teotónio et al., 2012). Throughout laboratory 
adaptation, D00 worms were provided with E. coli HT115(DE3) 
as a food source and the population evolved under discrete (non-
overlapping) generations imposed by a 4-day life cycle, herein re-
ferred to as “early reproduction.” This population, characterized 
by obligate outcrossing, harbors a large amount of genetic varia-
tion as a result of an initial mixture of 16 isogenic strains, chosen 
to represent a significant proportion of the known genetic diver-
sity in C. elegans (Noble et al., 2017; Rockman & Kruglyak, 2009; 
Teotónio et al.,  2012). The 5 wild strains analyzed in this work 
were part of that initial mixture.

2.3  |  Growth conditions

Bacteria were grown overnight in NGM-lite solid media at 37°C 
from LB-grown cultures. Nematode maintenance followed previ-
ously described protocols (Chelo,  2014; Stiernagle,  2006). On day 
one, L1 larvae were seeded on NGM-lite supplemented with ampicil-
lin (100 mg/mL), carrying a confluent lawn of E. coli HT115(DE3). 103 
larvae were used per plate, and development proceeded at 20°C and 
80% (RH) for 72 h, until day four of the life cycle. Plates were washed 
with M9 buffer and a KOH:NaCIO solution was added (“bleaching”) 
to kill adults and larvae but allowing unhatched embryos to survive. 

Eclosion of first-stage larvae (L1) occurred overnight in 4 mL of M9 
buffer with 2.5 mg/mL of tetracycline under constant shaking.

2.4  |  Population growth rates

To understand how reproductive timing is affected by the differ-
ent bacteria, population growth rates were measured at two dif-
ferent times: at 72 h after L1 seed (transition from day 3 to day 4), 
i.e., within hours of reaching sexual maturity (“early reproduction”; 
Anderson et al., 2011) and at 114 h post-seed (day 5; referred to as 
“delayed reproduction”). Frozen populations were thawed and main-
tained for two generations under standard maintenance conditions, 
plus one generation in presence of each bacterial strain for acclima-
tization. In the fourth generation, L1 larvae were seeded on NGM-
lite plates (103/plate) with a lawn of each bacterial strain and allowed 
to develop for 72 or 114 h. Following our standard maintenance pro-
tocol, cultures were bleached and the number of the live L1s was 
estimated the following day. This was done by counting the number 
of L1s present in 10 drops of 5 mL of the M9 solution where over-
night eclosion took place, under the stereoscope. Possible sources 
of error associated with this procedure have been discussed else-
where (Scanlan et al., 2018). Each estimate was obtained by pooling 
individuals from three plates. Each of the five strains (N2, CB4852, 
CB4855, CB4856, PX174) and the D00 population were assayed in 
independent experimental blocks. In the assays, each block included 
the N2 strain feeding on E. coli HT115(DE3) as a common reference, 
the four different bacteria and the two time points. For each bacte-
rial strain and each time point, we used five replicates for D00 and 
N2 and four replicates for each of the other four strains. Data are 
found in Tables S1 and S2.

2.5  |  Survival of individual genotypes

The effect of the four bacterial strains on survival was assayed for 
each of the five C. elegans strains (N2, CB4852, CB4855, CB4856, 
PX174). After thaw and growth for two generations under standard 
maintenance conditions, L1 larvae were seeded on NGM-lite media 
(103 individuals/plate) with a lawn of each of the four bacteria. 48 h 
later (day 3), L4 hermaphrodites were placed on 24-well NGM-lite 
plates (five individuals per well), with the corresponding bacte-
ria, which had been grown from a 5 μL inoculum. Individuals were 
transferred to fresh medium every 24 h until all were found dead or 
considered to be missing. Monitoring of missing or dead females oc-
curred at the time of transfer, and individuals were considered dead 
in the absence of movement or response when being gently touched 
with a platinum wire. Each of the four non-N2 C. elegans strains was 
assayed in a different experimental block, which also included N2 
as a common reference. Four plates were used per block, and every 
plate included all four bacterial strains. Both the N2 and one of the 
non-N2 strains were used in every plate, with N2 individuals occupy-
ing one-fourth of the total number of wells. This experimental design 
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enabled the estimation of plate effects within a block. In total, 480 
individuals were assayed in each block, with 120 being N2 individu-
als and 360 individuals from one of the other isogenic strains. Data 
are found in Table S3.

2.6  |  Reproductive schedule and survival of the 
D00 population

Daily offspring number and survival were monitored to study the 
effects of different bacteria on individuals of the D00 population. 
Frozen (−80°C) stock populations were thawed and maintained for 
two generations prior to the assay. To set up the experiment, 103 
L1 individuals were seeded on NGM-lite plates carrying each of 
the four bacteria and incubated until the beginning of day 3 (48 h 
later). From each plate, 30 female larvae were distributed onto 
two different 24-well plates (one larva per well) with antibiotic-
free NGM-lite and matching bacteria, as described for the individ-
ual genotypes (see above). Adult males from the same population 
and conditions, but which had been developing for one extra day, 
were added to the wells (two males per well). Individuals were 
transferred to fresh medium every 12 h until day 6, and every 48 h 
after day 6, until all individuals were found dead or considered to 
be missing. During the first five days, males that had died (or were 
missing) were replaced to ensure mating and fertilization. After 
removal of adults, plates were kept in the incubator for one day 
and then transferred to 4°C for a maximum of two days before 
counting L2–L3 larvae under the stereoscope with 10×–30× mag-
nification. These data were used to determine total fertility (life-
time reproductive success, LRS), variation in fertility through time, 
and the age at first reproduction (AFR). Survival was scored based 
on daily observations during the entire period of the experiment, 
with similar monitoring of missing or dead females as with the in-
dividual genotypes. Data are found in Table S4.

2.7  |  Developmental rate of the D00 population

The percentage of individuals that had reached adulthood at a spe-
cific chronological time was used as a measure of the developmental 
rate of the D00 population, with each bacterium. Initial population 
manipulation followed the protocol for estimation of population 
growth rates, with two generations feeding on E. coli HT115, fol-
lowed by one generation on each specific bacterium. In the fourth 
generation, 48 h after L1 seeding (1 day prior to the “early reproduc-
tion” time), individuals were removed from plates with M9 buffer, 
washed one time with M9 buffer, centrifuged, and 2 μL from the 
pellet were placed between a microscope slide and slide cover. 
Image acquisition was done with a DFK 23UX174 color camera 
(The Imaging Source) at 10 pixel/μm (60× magnification) mounted 
in a Nikon SMZ18 stereoscope. ImageJ was then used for manual 
image analysis to identify the sex of individuals (males and females) 
and their developmental stages, as L3, L4, or adults, by recognizing 

morphological distinctive features (state of vulval development and 
presence of embryos inside the adult for females and tail develop-
ment for males). Measurements were taken from three experimental 
blocks with all the four different bacteria being used in each block. 
This resulted in a mean of 79 ± 21 (SD) individuals being used per 
bacteria and block combination. Data are found in Table S5.

2.8  |  Data analysis

Statistical analyses were performed in R (R Core Team, 2019). Sup-
plementary files with analyses and R code can be found at FigShare 
(see 10.6084/m9.figshare.15022566 for Supplementary Figures 
and Tables; and 10.6084/m9.figshare.15022599 for Supplementary 
Data and analysis scripts).

Analysis of population growth rate was carried out using the 
natural logarithm (ln) of the observed rates. Whenever L1 lar-
vae could not be detected, which would lead to growth rate esti-
mates of zero (two samples; see Table  S1), values were replaced 
assuming that one L1 had been observed. To standardize the dif-
ferent blocks with C. elegans strains, the growth rates of C. elegans 
N2 with E. coli HT115(DE3) were first estimated in each block and 
at each time point with a random-effects model using a block-
specific baseline. The L1-to-L1 growth rate was thus modeled as 
ln
(

yi
)

= �0 + �
(

ti , Ei ,Gi

)

+ �
(

Bi , ti
)

+ �i, where the logarithm of the 
i-th measurement is a function of β0, the intercept (N2 genotype, 
E. coli HT15(DE3), and time 0); ti, time as a continuous variable of 
the number of hours since L1 seed; Ei, which is a categorical vari-
able representing the bacterial strains; Gi, which is also a categorical 
variable, referring to the different C. elegans genotypes; and, β (ti, Ei, 
Gi) reflects the statistical three-way interaction between terms. Bi 
is the estimated block effect and γ(Bi,ti) indicates that independent 
block effects were obtained for 72 and 114 h. ϵi is the error term and 
�i ∼ N

(

0, �2
)

. Analysis in R was done with the following pseudocode: 
log(GrowthRate) ~ Time * Bacteria * Celegans, offset = Block_offset, 
where GrowthRate, Time, Bacteria, and Celegans represent the vari-
ables yi, ti, Ei, and Gi indicated above, respectively, and Block_offset 
is γ(Bi,ti).

Cox regression (proportional hazards analysis; Cox,  1972) was 
used to test for differences in survivorship, with N2 and E. coli 
HT115(DE3) defining the baseline risk, and assuming right-censored 
data. For the survival of C. elegans strains, we used the following 
model: ln

{

hi(t)

h0(t)

}

= �
(

Ei ,Gi

)

+ �1
(

Pi
)

+ �2
(

Bi
)

+ �i, where the haz-
ard ratio (with respect to the baseline) is a function of the bacte-
rial strain (Ei), the C. elegans genotype (Gi), and their interaction, 
together with plate effects (Pi) and block effects (Bi). Once again, 
�i ∼ N

(

0, �2
)

. Mixed-effect models were used with the coxme func-
tion in R (Therneau, 2020) in order to include plate effects, with 
the following pseudocode: Surv (S.time,S.event) ~ Bacteria * Cele-
gans + (1|Plate) + Block_offset (see above). Mean lifespan values based 
on Kaplan–Meier estimation (Kaplan & Meier, 1958) were corrected 
by the values obtained for each block with N2 (see Figure S1). For 
the analysis of the D00 population data, the following model was 
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implemented with the functions Surv and coxph in the survival 
package in R (Therneau, 2015): Surv(S.time,S.event) ~ Bacteria, with 
S.time being the time at which an individual was found dead or miss-
ing (S.event). Kaplan–Meier estimation was used to obtain survival 
curves (see Figure  S2) and mean lifespan. Phenotypic association 
between the growth rate and mean lifespan of individual genotypes 
were tested with cor.test function, independently with each bacterial 
strain.

For fertility data of the D00 population, observations of 12 h 
intervals were collapsed into daily measures until day 6 and into 
a single bin beyond that time. Thus, fertility reported for day 3 
refers to embryos laid between 48 and 72 h post-L1 seed, be-
tween 72 and 96 h for day 4, between 96 and 120 h for day 5, 
between 120 and 144 h for day 6, and 144 h onwards to “day 7.” 
Model fitting and model comparisons were performed with gen-
eralized linear models with appropriate error distributions (see 
below), and analysis of deviance was used to test for significance. 
Parameter estimates were retrieved and tested with emmeans and 
pairs function (Lenth, 2018). For pairwise comparisons, we used 
Tukey's post hoc tests and report adjusted p-values. The repro-
ductive schedule of the D00 population was modeled following 
a negative binomial distribution: �I = exp

(

ln
(

ti
)

+ �
(

Ei , Ti
)

+ �i
)

, in 
which the probability of producing L2/L3 larvae per unit time, ti, is 
a function of the bacterial strain (Ei), time (Ti, a categorical variable 
of the number of days since the experimental set-up) and the error 
term ϵ i, with �i ∼ N

(

0, �2
)

. Note that ti, is the negative binomial pa-
rameter “exposure” which is unrelated to the definition of time 
(T) in this assay. This was done using the R function glm.nb in the 
MASS package, with the following pseudocode: Fertility ~ Bacteria 
* Time, where Fertility refers to the number of larvae observed per 
individual worm during a 24 h period. Post hoc comparisons were 
performed between fertility means within each day. Total fertility 
was modeled with a Poisson distribution as: ln

(

yi
)

= �0 + �
(

Ei
)

+ �i, 
where the logarithm of the i-th measurement is a function of β0, the 
intercept (E. coli HT15(DE3)) and the effect of the other bacteria, 
Ei. The error term �i ∼ N

(

0, �2
)

. This was done with the glm function 
in R, as follows: LRS ~ Bacteria, family = “poisson”(link=“log”), where 
LRS is the total number of observed larvae. A Gaussian fit was used 
to analyze AFR with the following model: yi = �0 + �

(

Ei
)

+ �i with 
the pseudocode: AFR ~ Bacteria, family =“gaussian,” where AFR (age 
at first reproduction) refers to the time between L1 seed and the 
time at which offspring was first observed.

Analysis of developmental rate was done by estimating the pro-
portion of individuals that had reached adulthood at the time mea-
surements took place. For this purpose, individuals identified as L3 
or L4 larvae were merged into a single class of “non-adults.” The fol-
lowing model was used: ln

(

x

1− x

)

= �0 + �
(

Ei , Si
)

+ �i, where the log-
arithm of odds ratio (adult/non-adult) is a function of the intercept 
β0 (defined by E. coli HT115 (DE3) and females), together with the 
bacterial strain (Ei), sex (Si) and their interaction. A generalized linear 
model was implemented with the glm function in R: Adult ~ Bacteria 
* Sex, family =“binomial.” where Adult includes the numbers of adults 
and non-adults observed with each bacterium. Analysis of deviance 

was used to test for significance and Tukey's post hoc tests were 
used for pairwise comparisons.

3  |  RESULTS

3.1  |  Reproductive timing and lifespan of individual 
genotypes

Measurements of population growth rates of the five different C. el-
egans genotypes (Figure 1a) show an overall decline with time (likeli-
hood ratio test, LRT = 369.4, df = 1, p < .0001), which depends on the 
bacteria present in the environment (LRT = 67.57, df = 3, p < .0001, 
on the interaction term). In the extreme case, with E. coli IAI1, the 
growth rate decreases by an average of 0.41 (± 0.03 SE) per hour. This 
result contrasts with observations done with S. marcescens Db11, 
where a much lower overall decrease is obtained (estimated slope 
of −0.04 ± 0.03 per hour). The effect of time is also strongly condi-
tioned on the C. elegans genotype (LRT = 38.42, df = 4, p < .0001, on 
the interaction term), such that there is a prevalent crossing of the 
different reaction norms (Figure 1a). Interestingly, in addition to this 
overall pattern, genotype-by-time effects are unique within each 
bacterium (significant three-way interaction between Time × Bacte-
ria × C. elegans, LRT = 17.71, df = 12, p < .0001, see Section 2) and can 
result in unexpected patterns, as with the CB4855 genotype, which 
shows an increase of population growth rate between 72 and 114 h 
exclusively in presence of S. marcescens Db11.

As with the population growth rates, the different bacteria also 
affected adult survival (Figure  1b and Figure  S1, χ = 629.6, df = 3, 
p < .001) in a way that differs between the C. elegans strains, as re-
vealed by a significant bacteria-host genotype interaction on lifes-
pan (χ = 72.9, df = 12, p < .0001). Notably, one of these strains shows 
a departure from the expected pathogenic effects of S. marcescens 
Db11 on survival; for the PX174 genotype, lifespan in presence of 
S. marcescens (8.7 ± 0.2 days) was clearly not reduced in compari-
son with the one obtained with E. coli HT115(DE3) (8.1 ± 0.4 days). 
Association between population growth and lifespan was generally 
absent (Table 1 and Figure S3), apart from a marginally significant 
positive correlation (p-value = .05), obtained with E. coli IAI1 for pop-
ulation growth at 114 h. Interestingly, C. elegans survival is markedly 
affected by E. coli IAI1 at that time (day 5), which does not happen 
with the other bacteria (survival of 63% in comparison with 89%–
95%). The corresponding coefficient of variation, obtained across 
the different genotypes, is also higher with E. coli IAI1 (28% in com-
parison with 2%–11%).

3.2  |  Reproduction and development of a 
genetically diverse population

Analysis of the effects of the four bacterial strains on the D00 popu-
lation shows that, despite prevalent outcrossing and genetic variabil-
ity, growth rate dynamics and survival are comparable to the ones 
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6 of 13  |     SANTOS et al.

observed in genetically homogeneous populations composed of sin-
gle genotypes (Figure 2). Once again, population growth rates at the 
early and delayed reproduction times (72 and 114 h, respectively) 

were dependent on the bacterial strains (Figure 2a), with a signifi-
cant time-by-bacteria interaction (LRT = 2.58, df = 3, p < .001). The 
main effects of time (LRT = 0.25, df = 1, p = .03) and bacterial strain 

F I G U R E  1 Genotype-by-environment (bacteria) interactions affect Caenorhabditis elegans population growth and survival. In (a), 
population growth rates of the five C. elegans genotypes, measured at the early (72 h) and delayed reproduction (114 h) times, reveal 
bacterial-specific effects on the temporal dynamics of reproductive output (significant three-way interaction, p-value < .001). In (b), it is 
shown that mean lifespan also depends on the interaction between C. elegans genotype and bacterial strain. Letters above symbols indicate 
group assignment from significant post hoc tests (p-value < .05) obtained with data for each bacteria independently. Mean estimates and SE 
are shown in (a) and predicted values are shown in (b). Note the logarithmic scale of the y axis in (a).

Escherichia coli 
HT115(DE3)

E. coli 
OP50

E. coli 
IAI1

Serratia marcescens 
DB11

Growth 72 h—Growth 114 h −.28 −.6 −.34 −.47

Growth 72 h—Lifespan .41 −.18 −.4 .08

Growth 114 h—Lifespan .14 .42 .88* .53

Note: Values are Pearson's correlation coefficients.
*p-Value < .05.

TA B L E  1 Phenotypic correlations 
between population growth rate and 
lifespan of the individual genotypes used 
in this work.
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    |  7 of 13SANTOS et al.

(LRT = 1.89, df = 3, p < .0001) were also significant. The presence 
of different bacteria also had significant effects on C. elegans sur-
vival (p-value < .0001), with lower mean lifespan observed in the 
presence of E. coli IAI1 and S. marcescens Db11, as expected (see 
Figure 2b, adjusted p-values < .05 from pairwise comparisons are 
used, and Figure S2).

Interestingly, when some of the traits that contribute to pop-
ulation growth are further explored a more complex scenario is 
observed (Figure 3). First, even though a detrimental (i.e., patho-
genic) effect was observed for fertility with S. marcescens Db11 
such effect was not present with the pathogenic E. coli IAI1 (Fig-
ure 3a,b). Overall, significant differences among bacterial strains 
were found for lifetime fertility (p < .0001, Figure  3a), with the 
highest brood size being observed with E. coli HT115(DE3) 
(371 ± 4), followed by E. coli OP50 (185 ± 2), E. coli IA1 (177 ± 2) 
and S. marcescens Db11, which resulted in a markedly reduced life-
time fertility (61 ± 1). These differences were also reflected in the 
reproductive schedule (Figure 3b), as revealed by a significant time 
by bacteria interaction (LRT = 42.5, df = 12, p < .001). Although fer-
tility was always maximized at day 4, the relative contribution of 
offspring produced before and after this peak day was dependent 
on the bacterial strains. For instance, with E. coli HT115(DE3) the 
higher mean estimates of fertility observed throughout the entire 
reproductive lifespan of the host only became significantly dif-
ferent from the other E. coli strains after day 5. In contrast, the 
initially diminished fertility of S. marcescens Db11 was no longer 
different from most values observed with the three E. coli strains 
from day 4 onwards (Figure 3b). Interestingly, comparing the start 
of offspring production of S. marcescens Db11 with the ones from 
all E. coli (Figure  3c) reveals a delay in the overall reproductive 

period, which could result from a specific reduction in reproduc-
tive output in the early stages or an increase in the developmental 
time. The comparison of developmental rates of D00 individuals 
with the different bacteria (Figure 3d), indicates that the specific-
ity of the reproductive schedule obtained with S. marcescens Db11 
cannot be, at least fully, attributed to developmental differences. 
In fact, the developmental status of most C. elegans females in the 
presence of S. marcescens DB11 is not different from the ones ob-
served with E. coli HT115 and E. coli OP50 (Figure 3d). The com-
parison of the developmental rates obtained with the different 
bacteria also reveals that bacteria can have sex-specific effects 
(LRT = 9.63, df = 3, p = .02). Particularly, the developmental rates 
of males and females with S. marcescens Db11 are not significantly 
different, in contrast to what is observed with the three E. coli 
strains.

4  |  DISCUSSION

The effects of microbes on host life history raise questions about 
their potential role in the evolution of aging. Here, we have inves-
tigated the effects of non-pathogenic and pathogenic E. coli strains 
and of a pathogenic S. marcescens strain on the reproductive sched-
ule and survival of C. elegans. Our results show that the effects of 
these microbes on host reproductive timing and lifespan depend on 
host genotype, suggesting that these traits might be subject to local 
adaptation to specific microbial environments in nature. We also ex-
amined a genetically diverse C. elegans population to study how mi-
crobial effects might affect the evolution of life-history traits, such 
as fertility, developmental rate, and lifespan.

F I G U R E  2 Bacterial-specific effects on the reproductive output and survival are maintained in the genetically diverse, male–female, 
Caenorhabditis elegans host population. As in Figure 1, (a) shows population growth rates measured at the early (72 h) and delayed 
reproduction (114 h) times, with each of the four bacteria used in this study. In (b), mean lifespan reveals the detrimental effects of the 
pathogenic Escherichia coli IAI1 and Serratia marcescens Db11 bacteria in contrast with the benign E. coli HT115(DE3) and E. coli OP50 strains. 
Letters above symbols indicate group assignment from significant post hoc tests (p-value < .05). In (a) and (b) mean estimates and SE are 
shown.
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8 of 13  |     SANTOS et al.

4.1 | Bacteria-host genotype interactions 
modulate C. elegans reproductive timing and lifespan

We found that population growth rates and survival of five C. elegans 
genotypes varied with the presence of the three E. coli strains and S. 
marcescens Db11, confirming previously observed effects of bacte-
ria on nematodes (Baeriswyl et al., 2010; Brooks et al., 2009; Coolon 
et al., 2009; Diaz et al., 2015; Gusarov et al., 2013; Ikeda et al., 2007; 
MacNeil et al., 2013; Marsh et al., 2016; Pang & Curran, 2014; Reinke 
et al., 2010; Samuel et al., 2016; Schulenburg & Félix, 2017; Stuhr & 
Curran, 2020; Zhang et al., 2021). We also found that these effects 
were host-genotype-dependent: each bacterium had a different im-
pact on the reproductive patterns of the worms over time, which 
varied between genotypes, supporting the importance of host geno-
types in modulating microbial effects (see Ekroth et al., 2021; Martin 
et al., 2017; Schulenburg & Ewbank, 2004; White et al., 2019; Zhang 
et al., 2021).

In general, patterns of population growth revealed the typically 
expected decrease in offspring production after the first days of the 
reproductive period (Anderson et al., 2011; Baeriswyl et al., 2010; 
Carvalho et al., 2014; Harvey & Viney, 2007; Pang & Curran, 2014). 
However, the results obtained with S. marcescens Db11 differed 
from those observed with E. coli. In the case of S. marcescens Db11, 

a slower decrease with age was observed, which could partially re-
sult from a reduction in the maximum reproductive rate earlier in 
life. Additionally, it could potentially indicate a reduced impact of 
reproductive aging or changes in self-sperm depletion. In C. elegans, 
self-sperm depletion occurs naturally due to sequential hermaphro-
ditism in which individuals first make sperm and later switch to the 
production of oocytes in excess, limiting offspring numbers to the 
number of sperm cells produced early on (Nayak et al., 2005; Scharf 
et al., 2021; Ward & Carrel, 1979). The differences observed in the 
effects of S. marcescens Db11 and E. coli strains are unlikely to be 
attributed solely to their pathogenicity or the stress responses they 
induce. If this were the case, we would expect to see similar patterns 
with E. coli IAI1 and S. marcescens Db11. Similarly, it is improbable 
that the varying amounts of bacteria present on the plates or inside 
the worm's gut play a significant role in these experiments. If that 
were the case, the effects of the two pathogenic bacteria could dif-
fer in intensity, but not in direction. These observations suggest that 
other mechanisms, such as the timing of germ-line development, 
may be involved.

Given that bacteria can serve as both pathogens and a food 
source for C. elegans (Frézal & Félix,  2015; Kim,  2013; Samuel 
et al., 2016; Schulenburg & Félix, 2017), it is possible that the dif-
ferences in reproductive dynamics were due to nutritional effects. 

F I G U R E  3 Bacteria affect the reproductive schedule and developmental rate of the genetically diverse, male–female, Caenorhabditis 
elegans D00 host population. (a) shows the lifetime reproductive success in the presence of the four different bacteria, while (b) shows 
the reproductive schedule. The age at first reproduction (AFR), given in hours and days after L1 seed (for comparison with other panels in 
the figure) is displayed in the dot plot in (c). In (d), the percentage of adult females and males at day 3 is given for the D00 population with 
the same bacteria. Note that, for the results shown in panels (a), (b), and (c), females were crossed with males that were one day older (see 
Section 2). Means and SE are provided. Letters above bars indicate group assignment based on post hoc tests (adjusted p-value < .05, see 
Section 2), which in (b) were performed within each time period.
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    |  9 of 13SANTOS et al.

Indeed, dietary effects have been shown to change reproduction 
and other life-history traits of C. elegans (Baeriswyl et al.,  2010; 
Brooks et al., 2009; Diaz et al., 2015; MacNeil et al., 2013; Pang & 
Curran, 2014; Reinke et al., 2010), e.g., interfering with the develop-
mental timing of the worm (Baeriswyl et al., 2010; Diaz et al., 2015; 
MacNeil et al., 2013; Stuhr & Curran, 2020). Such effects, which can 
depend on host genotype (see Zhang et al., 2021), might explain dif-
ferences in reproductive dynamics and support the importance of 
nutrition in shaping life-history evolution (Swanson et al., 2016).

The interaction between host genotypes and bacteria on the 
reproductive timing suggests that, if trade-offs between early and 
late reproduction are common in C. elegans, their evolution will 
likely be an important element of adaptation to microbial environ-
ments in nature. But would that translate into meaningful changes 
in other aging-related phenotypes, such as lifespan? In the present 
study, there was no evidence of a negative correlation between 
early and late reproductive output nor was there an overall cor-
relation observed between population growth rates at different 
time points and survival of C. elegans genotypes. Interestingly, a 
positive correlation was observed only in the presence of E. coli 
IAI1, where higher population growth rates at 114 h were linked to 
increased survival. Our measurements of population growth rate 
may be influenced by reduced survival, and it is crucial to con-
sider that the observed positive association might be attributed to 
the mortality of individuals from the most vulnerable genotypes 
by 114 h. This highlights the importance of condition-dependent 
mortality in the evolution of increased lifespan (Chen & Makla-
kov, 2017; Maklakov et al., 2015).

4.2  |  Bacteria modulate reproduction and 
sex-specific development of the genetically diverse 
D00 population

The expectation of trade-offs in C. elegans reproduction has been 
documented in different studies involving several causes, such as 
self-sperm limitation in hermaphrodites, mutations affecting ger-
mline maintenance and development (Angelo & Van Gilst,  2009; 
Antebi, 2007; Maklakov & Immler, 2016), or mutations in the insu-
lin/IGF-1 signaling pathway (Gems et al., 1998; Jenkins et al., 2004; 
Maklakov et al., 2017). Nevertheless, some experiments focused on 
self-fertilizing hermaphrodites have failed to detect negative correla-
tions between early and late fitness-related traits (Estes et al., 2005; 
Wu et al., 2012).

By showing microbe-specific effects on the reproductive 
schedule and in traits such as developmental rate and survival in 
the presence of males and standing genetic variation, our work 
with the male–female D00 population confirms that bacteria can 
have significant effects on trade-offs in natural systems. We ob-
served specific bacterial effects on survival, lifetime fertility, and 
reproductive schedule in the presence of males and absence of 
selfing. Notably, the impact of bacteria on reproductive span in 
this population, where sperm depletion did not occur, suggests a 

role for bacterial effects in reproductive aging. Our results also 
indicate that bacterial effects on life-history traits can be sex-
specific, as observed for developmental rate, and have implica-
tions for population adaptation to local microbial communities 
in nature. This is particularly relevant for gonochoristic (male–
female) Caenorhabditis species like C. remanei, but also for C. ele-
gans, despite its low expected outcrossing rates in nature (Barrière 
& Félix, 2005; Richaud et al., 2018). Although C. elegans males are 
rarely found in nature and considered evolutionary relics with lit-
tle contribution to natural populations (Chasnov, 2013; Chasnov 
& Chow, 2002), under challenging conditions, this may change 
transiently, as male frequencies and outcrossing increase during 
adaptation (Chelo & Teotónio, 2013; Cutter et al., 2019; Morran 
et al., 2009; Teotónio et al., 2012).

The presence of males in C. elegans populations has also been 
found to result in a trade-off between reproduction and longevity 
(Carvalho et al.,  2014; Wu et al., 2012). This can be attributed to 
sexual conflict between males and hermaphrodites, where the in-
creased reproductive output facilitated by male sperm is countered 
by a reduction in the lifespan of hermaphrodites due to mating 
(Gems & Riddle, 1996). Notably, this effect seems to occur only when 
self-sperm is absent, which is the case during the post-reproductive 
period in hermaphrodites or in mutation-derived females that lack 
self-sperm (Booth et al., 2019; Carvalho et al., 2014; Wu et al., 2012), 
as in the case of this study.

Overall, our findings underscore the major impact microbes 
can have on host life history. Our results suggest that selection for 
reproductive investment at specific times might explain microbial 
specificity in local adaptation, as has been observed in D. melano-
gaster (Rudman et al., 2019; Walters et al., 2020) and as has been 
proposed for C. elegans (Marsh et al., 2016; Samuel et al., 2016; 
Schulenburg & Ewbank, 2004; Zhang et al., 2021). This potential 
mechanism for adaptation is particularly relevant given the di-
verse, complex microbial environments that these organisms are 
exposed to in nature.
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